Children's National Team


Each year, over 232 million surgical procedures are performed around the world. Unfortunately, a significant number of patients experience complications, with reported complication rates as high as 30%. Furthermore, recent advances such as laparoscopic and robot-assisted surgery (RAS) have not changed complication rates.



A critical contributor to this unmet challenge is the human factor. Surgeon experience, training, clinical volume, dexterity, vision and cognition all contribute to the human error. Although laparoscopic and RAS are increasingly adopted because of their less invasive approach, these minimally invasive technologies completely rely on individual surgeon capacity and capability, create additional disparity in accessibility to the best practices and variation in outcomes.

We propose to address this unmet challenge by changing the current master-slave paradigm in laparoscopic and RAS, where the surgeon directly performs every aspect of surgery, to a semi-autonomous or autonomous robot-assisted surgery. This shift creates value via:

  • Enhanced safety
  • Access to the best techniques anywhere in the world;
  • Improved clinical outcomes
  • Significant economic benefits.

Surgery is late to the era of automation, which has clearly improved safety, quality and outcomes in the automobile, aviation and manufacturing industries. Beyond an initial demonstration of proof-of-feasibility, the deliverables in this proposal promise a new era where the best and safest techniques and technology are available to everyone in the world. We will begin with a simple surgical procedure and progress to the most complex ones. The goal is not to replace surgeons but to enhance their human capacity and capability through this new paradigm of collaborative autonomy between humans (initially surgeons but potentially untrained humans) and robots.

We have recently successfully developed and tested a robotic system for autonomous intestinal anastomosis in a preclinical porcine model. We selected this challenge because over a million such suturing and anastomosis tasks involving intestine and urologic tissues are performed in the U.S. alone each year during the third, reconstructive phase of surgery; along with the second phase of surgery, removing the pathology of interest, it is the critical element for a successful outcome; and the complication rates for anastomosis continue to be significant despite recent advances in surgical technologies. Surprisingly, our supervised autonomous surgery was not only feasible but had better outcomes than current clinical standards performed by expert surgeons.