A Dutch designer is determined to make robots less robotic

Rob Scharff

The words ‘robot’ and ‘robotic’ conjure up images of rigid, unemotional automatons that are as far removed from sensitive, hot-blooded human beings as you can get. But as robots creep increasingly into our everyday lives, one designer is out to change that feeling.

Rob Scharff, a researcher at Delft University of Technology in the Netherlands, has developed a 3-D printed soft robotic limb that responds to a human handshake by squeezing your hand back, mimicking human-to-human interaction.

“Currently, the feedback that robots are able to give humans is underdeveloped as compared to human-human communication,” explains Scharff. “In human-human communication, verbal communication is supported and complemented by body language. Integrating these human-like qualities in robotics can help to make communication with robots more intuitive.”

Scharff’s soft robotics prototype is printed from a flexible material and integrates air chambers in the palm of the robot’s hand, which expand and contract in response to pressure, such as from a human grasp, causing the robot’s fingers to grip either more or less. The fingers and thumb of the hand can be controlled separately and the robot’s wrist rotates in both directions – making the robot all the more human as it does so.

“Qualities [such] as movement and tactility become parameters that designers can play with to design expression,” he adds. “Designing a robot’s expression is no longer limited to making use of the existing actuators [like] screens and speakers, but can be deeply embedded in the design of the robot’s actuators, sensors and body.”

The robotic limb was on show at Dutch Design Week 2015 in October, an annual event to show off the designs of the future. Scharff is looking at developing the technology into custom 3D printed gloves that can help stroke victims learn to grip objects again. Development of soft robotics can have many uses; making hitherto cold, rigid robots seem much softer and human-like holds much promise in the area of prosthetics, care robots, and even industrial grippers where a delicate touch is required. Such developments might go some way to making robots less robotic.