Hermes Team

The nuclear reactor meltdown the Fukushima Daiichi Power Plant in March 2011 is considered to be the greatest nuclear disaster since Chernobyl. It is estimated that if the cooling system could have been turned back on within a few hours of the initial failure, then the catastrophe could have been greatly minimized. Now, imagine if a human could have entered the facility after the disaster and performed the required task. This wasn’t an option because any human would be harmed by the high level of radiation before even getting near the Power Plant. So, what if we could send a human-like machine immune to radiation and able to perform activities similar to a human? This intuitive idea is the core concept of HERMES (Highly Efficient Robotic Mechanisms and Electromechanical System) at the Biomimetic Robotics Laboratory at MIT.

 

State-of-art legged robots are intended to do human-like tasks. However, no such robots have been able to negotiate the debris and obstacles of the radioactive environment inside Fukushima with comparable performance to humans.

Taking the initiative to bring robots to the next level, the Defense Advanced Research Project Agency (DARPA) created the DARPA Robotics Challenge (DRC), in which robot participants had to navigate a simulated disaster environment and perform human-like tasks, such as driving a vehicle, opening doors, and turning valves. These tasks that can be easily carried out by ordinary humans but are still a great challenge to be reliably implemented on machines.

In June 2015, the public saw the result of DARPA’s sizable investment towards the goal of leveraging robotic technology during the Robotics Challenge finals. The greatest authorities in the robotics field invested a great deal of time, money and brainpower during the three years in order to participate and win the competition. Although the robots demonstrated incredible motor abilities and autonomous reasoning like never seen before, the competing machines could still not outperform ordinary humans in conducting the required tasks.

We anticipate that HERMES can be used in a wide variety of applications in real world scenarios. Ranging from firefighting and search & rescue tasks to space exploration, a ready-to-deploy version the HERMES robot can replace a person in any situation that a human responder may face danger in the line of duty. By using a full-body teleoperation strategy, HERMES can be remotely controlled by an expert and carry all the responder expertise and motor abilities to the disaster scenario without actually putting a human life in risk.

For the past two years, we have been working on the first version of the HERMES System, including the Human Machine Interface (Balance Feedback Interface and Motion Capture Suit) and the humanoid robot itself. All the hardware and software is developed and tested in the lab so the team can easily modify and improve the machine in the hardware and software level.

hermes-14.jpg